If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-7x-61=0
a = 2; b = -7; c = -61;
Δ = b2-4ac
Δ = -72-4·2·(-61)
Δ = 537
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{537}}{2*2}=\frac{7-\sqrt{537}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{537}}{2*2}=\frac{7+\sqrt{537}}{4} $
| 22x+4-x=180 | | 22x-4+x=90 | | 170=27x+8 | | 3=9-d | | 4(-x+3)=2x | | 9x+6+3x+2=70 | | (x+14)=(4x+9)=180 | | 2.41n+0.5=1.37n-4.7 | | -17v=-10-16v | | 3x+2+9x+6=70 | | 8(x+12)=18 | | 45/18=5/x | | 3x+6+9x+6=70 | | 14x-4=+5+21 | | 3(2k-5)=4-(3k+7) | | 10=30x+50 | | 13p+1=2p+12 | | 4x=10x-15 | | 18-6x=14+2x | | 14x-4=+15+11 | | 3+6x=2x+72 | | 4(½x+3)=3x+12-x | | 5(1+8a)=245 | | 14x-17=5+12x | | 12-4(2x+9=-8(x+3) | | 1.25x=-6.5050 | | 8/6y-13=-15 | | -4d-2(-3-d)=-14 | | 15-4x=-11-2x | | 3(x+3)=6x+7 | | 7x-4+8x=1+16x | | 16x+2+6x+2=110 |